
C-system of a module over a monad on sets1

Vladimir Voevodsky2,3

August 2014

Abstract

This is the second paper in a series started in [26] which aims to provide mathematical
descriptions of objects and constructions related to the semantical theory of dependent type
systems.

We construct for any pair (R,LM), where R is a monad on sets and LM is a left module
over R, a C-system (“contextual category”) CC(R,LM) and describe, using the results of [26]
a class of sub-quotients of CC(R,LM) in terms of objects directly constructed from R and
LM . In the special case of the monads of expressions associated with binding signatures this
construction gives, for the first time, a mathematically rigorous way of constructing a C-system
from a general collection of judgements of the four Martin-Löf kinds that satisfies a well specified
set of conditions.

1 Introduction

The first few steps in all approaches to the semantics of dependent type theories remain insufficiently
understood. The constructions which have been worked out in detail in the case of a few particular
type systems by dedicated authors are being extended to the wide variety of type systems under
consideration today by analogy. This is not acceptable in mathematics. Instead we should be able
to obtain the required results for new type systems by specialization of general theorems formulated
and proved for abstract objects the instances of which combine together to produce the objects
associated with a given type system.

An approach that follows this general philosophy was outlined in [21]. In this approach the con-
nection between the type theories, which belong to the concrete world of logic and programming,
and abstract mathematical concepts such as sets or homotopy types is constructed through the
intermediary of C-systems.

C-systems were introduced in [2] (see also [3]) under the name “contextual categories”. A modified
axiomatics of C-systems and the construction of new C-systems as sub-objects and regular quotients
of the existing ones in a way convenient for use in type-theoretic applications are considered in [26].

In the approach of [21], in order to provide a mathematical interpretation (semantics) for a type
theory one constructs two C-systems. One C-system is constructed from the formulas of the type
theory using as an initial step the construction of the present paper. The second C-system is
constructed from the category of abstract mathematical objects using the results of [22]. Both
C-systems are then equipped with additional operations corresponding to the “inference rules” of
the type theory.

The main component of this approach is the expected result that for a particular class of the infer-
ence rules the concrete C-systems built using the constructions of the present paper and equipped

12000 Mathematical Subject Classification: 18D99, 08C99, 03B15
2School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu
3Work on this paper was supported by NSF grant 1100938.

1

with operations corresponding to these inference rules are initial objects in the category of C-
systems with the corresponding operations. This is known as the Initiality Conjecture. In the case
of the pure Calculus of Constructions this conjecture was proved in 1988 by Thomas Streicher [19].
The problem of finding an appropriate formulation of the general version of the conjecture and of
proving this general version will be the subject of future work.

For such inference rules, then, there are unique homomorphisms from the concrete C-systems to
the abstract C-systems that are compatible with the corresponding systems of operations. Since
objects and morphisms of concrete C-systems are built from formulas of the type theory and objects
and morphisms of abstract C-systems are built from mathematical objects such as sets or homotopy
types and the corresponding functions, these homomorphisms provide a mathematical meaning to
formulas of type theory.

The existence of such homomorphisms in the particular case of the “standard univalent models”
of Martin-Löf type theories and of the Calculus of Inductive Constructions (CIC) provides the
only known justification for the use of the proof assistants such as Coq for the formalization of
mathematics in the univalent style (see [27], [23]).

It is important to distinguish the concepts of a model of a type theory and the concept of an
interpretation of the same type theory. A model of type theory can be defined as a C-system that
is equipped with the systems of operations corresponding to the inference rules of the type theory.
A (categorical) interpretation of a type theory with values in a given category C is a functor from
the category underlying the syntactic C-system of the type theory to C.

Only if we know that the initiality result holds for a given type theory can we claim that any its
model defines an interpretation by taking the composition of the canonical homomorphism of the
C-systems with the functor such as the functor int of [22]. A similar problem also arises in the
predicate logic but there, since one considers only one fixed system of syntax and inference rules,
it can and had been solved once without the development of a general theory.

When one speaks about the univalent model of a Martin-Löf type theory or of the CIC one often
fails to distinguish between the model and the interpretation. A construction of a model for the
version of the Martin-Löf type theory that is used in the UniMath library ([27],[23]) was sketched
in [11]. At the time when that paper was written it was unfortunately assumed that a proof of
the initiality result can be found in the existing body of work on type theory which is reflected in
[11, Theorem 1.2.9] (cf. also [11, Example 1.2.3] that claims as obvious everything that is done in
both the present paper and in [26]). Since then it became clear that this is not the case and that
a mathematical theory leading to the initiality theorem and providing a proof of such a theorem is
lacking and needs to be developed.

As the criteria for what constitutes an acceptable proof were becoming more clear as a result of
continuing work on formalization, it also became clear that more detailed and general proofs need
to be given to many of the theorems of [11] that are related to the model itself. For the two of
the several main groups of inference rules of current type theories it is done in [25] and [24]. Other
groups of inference rules will be considered in further papers of the series.

This paper may be considered to be an analog of [22] for the concrete side of the theory in the
sense that it provides a very general construction the particular cases of which lead to the concrete
(syntactic) C-systems of type theories.

If R = (R, η, µ) is a monad on a category C (see Definition ??) then there is defined the Kleisli
category CR of R whose objects are the same as objects of C and morphisms from X to Y are

2

defined as morphisms from X to R(Y) in C. The identity morphisms in CR are given by the η
operation of R and the composition by the composition in C and the µ operation of R.

A left R-module LM over R with values in a category D (see Definition ??) defines a functor
LMR : CR → D and this function from left R-modules to functors from the Kleisli category is an
equivalence (see ??).

An important case is the left R-module corresponding to R itself which we will also denote by R.

Monads on the category of sets and left modules over such monads have a number of special ????

Of a particular interest is the case of “syntactic” pairs (R,LM) where for X = {x1, . . . , xn}, R(X)
and LM(X) are the sets of expressions of some kind with free variables from {x1, . . . , xn} modulo
an equivalence relation such as α-equivalence. The difference between R and LM is in this case
expressed by the fact that one can substitute elements from R(X) for variables both in R(Y) and
LM(Y) but elements of LM(X) can not be substituted for variables in either.

The simplest class of syntactic pairs, where LM = R, arises from binding signatures (see [7, p.228]).
To any such signature Σ one associates a class of expressions with bindings and R({x1, . . . , xn}) is
the set of such expressions with free variables from the set {x1, . . . , xn} modulo α-equivalence.

The more general case when LM is not equal to R arises when one starts to distinguish “type ex-
pressions” from “object expressions”. The rules of type theories require the possibility to substitute
an object expression instead of a variable both in a type expression and in an object expression but
do not require to substitute a type expression instead of a variable either in a type or in an object
expression. In type theories of proof assistants such as Coq the user may be under the impression
that the substitution of type expressions instead of variables occurs (as in substituting unit for T
in iscontr(T) in the UniMath to obtain iscont(unit), cf. [23]) this is however due to a “silent”
map from object expressions to type expressions that is used in these theories. What actually
happens in these substitutions is that an object expression whose type is a universe is substituted
instead of a variable in some situations and the same object expression is mapped to the set of
type expressions and used as a type expression in others. In our constructions this corresponds to
LM = R - an object expression that is an element of R(X) for some set of variables X is considered
as an element of the set of type expressions LM(X) using the identity map defined by this equality
(more generally one may observe the same illusion when LM ⊂ R).

The question of whether to keep this map silent or to give it a name (usually El) is know in
type theory as the difference between the type theories with “Russell universes” (silent map) and
“Tarski universes” (explicit map) which is at the center of some of the current controversies about
the universe management in proof assistants. It is also the subject of a discussion in the last,
unfinished, chapter in [17].

For the purposes of the present paper we fortunately don’t need to make a choice between the two
approaches since the formalism that we develop is applicable to both. It is however clear from the
constructions that the separation between R and LM is a very natural possibility that directly
generalizes the case of LM ⊂ R and creates new examples (e.g. Example ??).

As was shown in [7] the monad that one associates to a binding signature can be characterized as
being an initial object in the category of monads equipped with “left-linear” operations correspond-
ing to the operations of the signature. This provides an abstract mathematical characterization
of the concrete objects - expressions modulo α-equivalence or, equivalently, expressions with De
Brujin indexes.

3

An important remark needs to be made here. While monads provide a very convenient way of
expressing syntax with bindings in terms familiar to mathematicians the approach based on monads
is equivalent to an earlier one pioneered in [4]. For two sets X and Y let Fun(X,Y) be the set of
functions from X to Y . In that earlier approach one considers the category F such that Ob(F) = N
and

Mor(F) = qm,nFun(stn(m), stn(n))

where stn(i) = {0, . . . , i − 1} is the “standard” set with i elements, and functors Funct(F, Sets)
from F to Sets (the authors call these functors “presheaves” considering them as presheaves on F op)
. This category of functors is equivalent4 to the category of finitary (co-continuous) functors from
Sets to Sets. In particular, there is a monoidal structure (•, V) on Funct(F, Sets) corresponding
to the composition of functors under this equivalence (cf. [4, Sec. 3]) and finitary monads can be
considered as monoids in Funct(F, Sets) with respect to this monoidal structure.

Using this equivalence of concepts (detailed in []) the constructions and results of [7] and [4] can be
viewed together as describing different aspects of a fundamental connection between the concrete
world of syntax and the abstract world of categorical mathematics.

After this long detour let me clarify that the results and constructions of the present paper do
not depend on either [7] or [4], except for the definition of a left module over a monad in [7] and
examples. The connection to [7] and [4] will become important only in future papers where we will
consider the abstract concept of a system of inference rules and where binding signatures and the
corresponding syntactic monads will become essential.

In the present paper, after some general comments about monads on Sets and their modules, we
construct for any such monad R and a left module LM over R a C-system (contextual category)
CC(R,LM). We start with a construction of a category C(R) such that Ob(C(R)) = N is the set
of natural numbers whose elements we will denote as m̂, n̂ etc. and

Mor(C(R)) = qm̂,n̂HomSetsR(stn(n), stn(m))

and the identity and composition is defined such as to make the mapping n̂ 7→ stn(n) to extend
to a fully faithful functor cr1 from C(R)op to the Kleisli category SetsR of R. We may sometimes
use this functor as a “coercion”, in the terminology of proof assistant Coq, i.e., to write n̂ instead
of stn(n) and f instead of Φ(f). We will also use the function LM 7→ LMR from left modules to
functors on the Kleisli category as a coercion. In agreement with this convention we may write LM
for the presheaf of sets on C(R) given by n̂ 7→ LM(stn(n)).

We describe, using the results of [26], all the C-subsystems of CC(R,LM) in terms of objects
directly associated with R and LM .

We then define two additional operations σ and σ̃ on CC(R,LM) and describe the regular congru-
ence relations (see [26]) on C-subsystems of CC(R,LM) which are compatible in a certain sense
with σ and σ̃.

Such regular congruence relations correspond, in the particular cases of syntactic monads and C-
subsystems of CC(R,LM) generated by systems of inference rules, to the relations that can be
described by the two kinds of equality judgements.

4In the set-theoretic mathematics this equivalence can not be defined without axiom of choice. The problem lies in
the fact that the obvious functor from F to the category of finite sets, while it is fully faithful and essentially surjective,
does not have a constructive inverse. In the univalent foundations, while one still can not construct an inverse to the
functor from F to finite sets, one can construct an inverse to the corresponding functor from Funct(FSets, Sets) to
Funct(F, Sets) using the fact that Sets is a (univalent) category. Cf. [1] and [27, RezkCompletion library].

4

More precisely, suppose that we are given a type theory that is formulated in terms of the four
kinds of judgements originally introduced by Per Martin-Löf in [16, p.161]5:

(x0 : T0, . . . , xn−1 : Tn−1)T type

(x0 : T0, . . . , xn−1 : Tn−1) t : T

(x0 : T0, . . . , xn−1 : Tn−1)T = T ′

(x0 : T0, . . . , xn−1 : Tn−1) t = t′ : T

to which one adds the judgement

(x0 : T0, . . . , xn−1 : Tn−1) ok

asserting that (x0 : T0, . . . , xn−1 : Tn−1) is a valid context of variable declarations.

Since we are only interested in the α-equivalence classes of judgements we may assume that the
variables declared in the context are taken from the set of natural numbers such that the first
declared variable is 0, the second is 1 etc. Then, the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1)T type

can be identified with the set of judgements of the form

(0 : T0, . . . , n− 1 : Tn−1, n : T) ok

With this identification the derivable judgements of the type theory whose raw syntax for object
expressions is given by a monad R and raw syntax for type expressions by a left R-module LM ,
can be described as four subsets B̃, B,Beq and B̃eq where

B̃ ⊂
∐
n≥0

LM(stn(0))× . . .× LM(stn(n− 1))

B ⊂
∐
n≥0

LM(stn(0))× . . .× LM(stn(n− 1))×R(stn(n))× LM(stn(n))

Beq ⊂
∐
n≥0

LM(stn(0))× . . .× LM(stn(n− 1))× LM(stn(n))2

B̃eq ⊂
∐
n≥0

LM(stn(0))× . . .× LM(stn(n− 1))×R(stn(n))2 × LM(stn(n))

The sets on the right hand side of the first two of these inclusions are in the bijective correspondences
with the sets Ob(CC(R,LM)) and Õb(CC(R,LM)). It was shown in [26, Proposition 4.3] that

for any C-system CC, pairs (B, B̃) where B ⊂ Ob(CC) and B̃ ⊂ Õb(CC) that satisfy certain
conditions are in a bijective correspondence with C-subsystems of CC. In Proposition 4.1 we give a
direct reformulation of these conditions in the case of C-systems of the form CC(R,LM) in terms
of subsets B̃ and B and in Remark 4.2 we show how these conditions look like in the notation of
type theory.

5We are not using the notation based on ` that became widespread in the modern literature on type theory since
it conflicts with other uses of the turnstile symbol in logic.

5

We then continue our analysis to provide a mathematical meaning to the subsets Beq and B̃eq as
well. In order to obtain a bijection of Proposition 6.11 between pairs of such subsets that satisfy
certain properties and objects that have meaning for general C-systems we introduce operations σ
and σ̃.

Proposition 6.2 and subsequent lemmas culminating in Proposition 6.11 form what is probably
the most important part of the paper. They provide, for the first time, a rigorous mathematical
analysis of the conditions that the derivable definitional equality judgements of a type system
have to satisfy in order to define well-behaved equivalence relation on the sets such as the sets of
morphisms (context substitutions) of a type theory.

While proving conditions of Proposition 6.2 in the case when B̃, B, Beq and B̃eq are the sets of
derivable judgements of a particular type system is something that must be done in order to apply
the results of the present paper to this type system, proving these conditions is much less difficult
than giving a direct construction of a C-system starting from the syntax and the inference rules.

Providing this explicit set of conditions and proving that they are necessary and sufficient in order
to associate a C-system and, therefore, any of the other semantic objects such as a category with
families, to a particular type system may be considered to be the main result of this paper.

For morphisms f : X → Y and g : Y → Z we denote their composition as f ◦ g. For functors
F : C → C′, G : C′ → C′′ we use the standard notation G ◦ F for their composition.

We often write y instead of (x, y) for an element of the set qx∈XY (x) corresponding to x ∈ X and
y ∈ Y (x). For example, we may write f for the element (m, (n, f)) of Mor(F) corresponding to a
function f : {1, . . . ,m} → {1, . . . , n}.

Following the notation of the proof assistant Coq we let unit denote the distinguished one point
set or type and tt the only point of unit.

This is one the papers extending the material which I started to work on in [20]. I would like
to thank the Institute Henri Poincare in Paris and the organizers of the “Proofs” trimester for
their hospitality during the preparation of this paper. The work on this paper was facilitated by
discussions with Richard Garner and Egbert Rijke.

2 Left modules over monads

Definition 2.1 below is, according to Manes [15, p.30], due to Godement [6]. See also [14, Ch. VI].

Definition 2.1 [2015.07.30.def1] A monad on a category C is a collection of data of the form:

1. a functor R : C → C,

2. for any X ∈ C, a morphism ηX : X → R(X),

3. for any X ∈ C, a morphism µX : R(R(X))→ R(X)

such that:

1. for any f : X → Y one has

(a) ηX ◦R(f) = f ◦ ηY ,

6

(b) µX ◦R(f) = R(R(f)) ◦ µY ,

2. for any X one has
R(µX) ◦ µX = µR(X) ◦ µX

3. for any X one has
R(ηX) ◦ µX = IdR(X)

and
ηR(X) ◦ µX = IdR(X)

Remark 2.2 [2015.07.30.rem1] It is very easy to construct an equivalence between the type of
monads on a given precategory C (resp. a bijection between the set of monads on C) and the type
(resp. set) of monoids in the category Funct(C, C) with respect to the monoidal structure given
by the composition of functors. This equivalence, in the case of a type theoretic formalization, is
actually an isomorphism where by an isomorphism we mean an isomorphism of the corresponding
objects of the syntactic category.

Remark 2.3 [2015.08.12.rem1] There are at least two other definitions that specify, over any
universe, types of objects that are equivalent to the type of monads. Objects specified by one of
these definition are called by Manes “algebraic theories in clone form in C”. See [15, Def. 3.2,
p.24]. The objects specified by another one, which appears in [15, Exercise 12, p.32] and then more
explicitly in [18] are called by Moggi “Kleisli triples”. Kleisli triples are more popular than monads
in papers related to computer science while monads are more popular in mathematical papers.
Formally proving the equivalence between these three definitions as well as constructing examples
that show that these equivalences are not isomorphisms in the syntactic category may be the topic
for a small project in univalent formalization.

An analogous project in the set-theoretic formalization should be able to construct bijections be-
tween the corresponding sets because the underlying function ROb : Ob(C) → Ob(C) remains un-
changed by the corresponding equivalences and therefore they can be seen as bijections between
the sets of monad, algebraic theory in clone form, and Kleisli triple structures on a given function
ROb.

Problem 2.4 [2015.07.30.prob3] Given a monad (R, η, µ) on a precategory C to construct a new
precategory CR and a functor GR : C → CR.

The following construction first appeared in [12] who worked with the dual concept that we today
would call a co-monad. To obtain the correct correspondence between his construction and Con-
struction 2.5 one needs to replace his L by our Cop, his K by our (CR)op and his G by our (GR)op.

Construction 2.5 [2015.07.30.constr3] We set Ob(CR) = Ob(C) and

Mor(CR) = qX,Y ∈Ob(C)HomC(X,R(Y))

For X ∈ Ob(C) define IdX in Mor(CR) by the formula

IdX,CR = (X, (X, ηX))

7

For f = (X, (X ′, f0 : X → R(X ′))) and g = (X ′, (X ′′, g0 : X ′ → R(X ′′))) in Mor(CR) define their
composition f ◦ g by the formula

f ◦ g = (X, (X ′′, f0 ◦R(g0) ◦ µX′′))

Define the object component (GR)Ob of the functor GR to be the identity function of Ob(C) the
morphism component by the formula

(GR)Mor(f : X → X ′) = (X, (X ′, f ◦ ηX′))

For the verification of the axioms needed for the proof that these data defines a category and a
functor we refer to [12].

The category CR specified by Construction 2.5 is called the Kleisli category of R.

Definition 2.6 [2015.07.30.def4] Let C be a category and (R, η, µ) a monad on C. A left module
over R with values in a category D is a collection of data of the following form

1. a functor LM : C → D,

2. for any X ∈ C a morphism ρX : LM(R(X))→ LM(X)

such that:

1. for any f : X → Y one has

ρX ◦ LM(f) = LM(R(f)) ◦ ρY

2. for any X one has:
LM(ηX) ◦ ρX = IdLM(X)

and

3. for any X one has:
LM(µX) ◦ ρX = ρR(X) ◦ ρX

Example 2.7 [2015.07.30.ex1] Taking D = C, LM = R and ρ = µ one obtains a left module
over R whose underlying functor is R itself.

Remark 2.8 [2015.07.30.rem1] It is very easy to construct an equivalence between the type of
left modules over a given monad (resp. a bijection between the set of left modules over a given
monad) with values in the same category C and the type (resp. set) of left modules over the
corresponding monoid in the monoidal category (Funct(C, C), ◦). In the type theoretic case this
equivalence is an isomorphism of the corresponding objects of the syntactic category.

The following construction was, to the best of our knowledge, first described in [9, Def. 10, p.550]
under the name of a Kleisli extension.

Problem 2.9 [2015.07.30.prob5] For a monad R and a left module LM over R to construct a
functor LMR : CR → D.

8

Construction 2.10 [2015.07.30.constr4] We define the object component of LMR to be the
object component of LM . For f = (X, (X ′, f0)) in Mor(CR) we define

(LMR)Mor(f) = LM(f0) ◦ ρX′

For the identity morphism axiom we have

LMR(IdX) = LMR((X, (X, ηX))) = LM(ηX) ◦ ρX = IdLM(X)

For the composition axiom we have

LMR((X, (X ′, f0)) ◦ (X ′, (X ′′, g0))) = LMR((X, (X ′′, f0 ◦R(g0) ◦ µX′′))) =

LM(f0 ◦R(g0) ◦ µX′′) ◦ ρX′′ = LM(f0) ◦ LM(R(g0)) ◦ LM(µX′′) ◦ ρX′′ =

LM(f0) ◦ LM(R(g0)) ◦ ρR(X′′) ◦ ρX′′ = LM(f0) ◦ ρX′ ◦ LM(g0) ◦ ρX′′

and
LMR((X, (X ′, f0))) ◦ LMR((X ′, (X ′′, g0))) = LM(f0) ◦ ρX′ ◦ LM(g0) ◦ ρX′′

This completes Construction 2.10.

Lemma 2.11 [2015.07.30.l1] For a monad R on C, a left module LM and f : X → X ′ in C one
has

LMR(GR(f)) = LM(f)

Proof: One has

LMR(GR(f)) = LMR((X, (X ′, f ◦ ηX′))) = LM(f ◦ ηX′) ◦ ρX′ = LM(f) ◦ LM(ηX′) ◦ ρX′ =

LM(f) ◦ IdLM(X′) = LM(f)

Remark 2.12 A construction of a left R-module from a functor CR → D is outlined in [9, Prop.
3] and in the same paper there is an outline of a proof that these two constructions are inverse to
each other providing a bijection between left R-modules with values in a category D and functors
CR → D. This bijection is identity on the underlying functions from the type (resp. set) of objects
of C to the type (resp. set) of objects of D so that one can talk about the bijection between the
sets of a left R-module structures on a function Ob(C) → Ob(D) and the set of functor structures
on the same function considered as a function from Ob(CR). In type theoretic formalization this
equivalence is not an isomorphism in the syntactic category.

Remark 2.13 [2015.08.12.rem3] In the univalent foundations the relationship between the type
of finitary functors Sets→ Sets (where by Sets we mean the category of h-sets in a fixed universe)
and the type of functors FSets → Sets is not entirely clear at the moment. On the other hand
the relationship between the type of functors FSets→ Sets and the type of functors F → Sets is
better in the univalent foundations then in the set-theoretic ones since in the univalent foundations
these two types are constructively equivalent (cf. [1, Theorem 8.4]).

Definition 2.14 [2015.08.17.def1] A pre-algebraic theory is a collection of data of the following
form

9

1. a function R : N→ Sets,

2. for each n a function ηn ∈ Fun(stn(n), R(n)),

3. for each f ∈ Fun(stn(n), R(m)) a function bind(f) ∈ Fun(R(n), R(m)),

such that the following conditions hold:

1. for all n, bind(ηn) = IdR(n),

2. for all f ∈ Fun(stn(n), stn(m)), ηn ◦ bind(f) = f ,

3. for all f ∈ Fun(stn(n), R(n′)), g ∈ Fun(stn(n′), R(n′′)), bind(f◦bind(g)) = bind(f)◦bind(g).

Let us introduce the following notation:

F (n,m) = Fun(stn(n), stn(m))

and, for a pre-algebraic theory R,

R(n,m) = Fun(stn(n), R(m))

Let R = (R, η, bind) be a pre-algebraic theory. For each pair n,m ∈ N define a function

φR : F (n,m)→ R(n,m)

by the formula
φR(f) = f ◦ ηm

For each triple n,m, k and f ∈ R(n,m), g ∈ R(m, k) define f ◦̂g ∈ R(n, k) by the formula

f ◦̂g = f ◦ bind(g)

Lemma 2.15 [2015.08.18.l1] Let R = (R, η, bind) be a pre-algebraic theory. Then one has:

1. for any n,m, k, l and f ∈ R(n,m), g ∈ R(m, k), h ∈ R(k, l) one has

(f ◦̂g)◦̂h = f ◦̂(g◦̂h)

2. for any f ∈ R(n,m) one has
f ◦̂ηm = f

ηn◦̂f = f

3. for any f ∈ F (n,m), g ∈ R(n,m) one has

φR(f)◦̂g = f ◦ g

4. for any f ∈ F (n,m), g ∈ F (m, k) one has

φR(f)◦̂φR(g) = φR(f ◦ g)

10

Proof:

1. We have

(f ◦̂g)◦̂h = (f ◦ bind(g)) ◦ bind(h) = f ◦ (bind(g) ◦ bind(h)) = f ◦ bind(g ◦ bind(h)) = f ◦̂(g◦̂h)

2. We have
f ◦̂ηm = f ◦ bind(ηm) = f ◦ IdR(m) = f

ηn◦̂f = ηn ◦ bind(f) = f

3. We have

φR(f)◦̂g = φR(f) ◦ bind(g) = f ◦ ηm ◦ bind(g) = f ◦ (ηm ◦ bind(g)) = f ◦ g

4. We have
φR(f)◦̂φR(g) = f ◦ φR(g) = f ◦ g ◦ ηk = (f ◦ g) ◦ ηk = φR(f ◦ g)

Definition 2.16 [2015.08.17.def2] A pre-algebra over a pre-algebraic theory (R, η, bind) is a col-
lection of data of the following form:

1. a function LM : N→ Sets,

2. for each f ∈ R(n,m) a function ρ(f) ∈ F (LM(n), LM(m)),

such that the following conditions hold

1. ρ(ηn) = IdLM(n),

2. for f ∈ R(n,m), g ∈ R(m, k), ρ(f) ◦ ρ(g) = ρ(f ◦̂g).

Remark 2.17 [2015.08.18.rem1] Note that for any algebraic pre-theory R = (R, η, bind) the
pair (R, bind) is a pre-algebra over R.

3 The C-system CC(R,LM).

Let R be a pre-algebraic theory and LM a pre-algebra over R. Let CC(R,LM) be the pre-category
whose set of objects is

Ob(CC(R,LM)) = qn≥0Obn(R,LM)

where
Obn(R,LM) = LM(0)× . . .× LM(n− 1)

Remark 3.1 [2015.08.14.rem1] In a univalent formalization based on UniMath one can define
Obn(R,LM) as the type forall(i : stn n), (LM (i)).

11

Define the function l on Ob(CC(R,LM)) setting l(n,A) = n.

The set of morphisms of CC(R,LM) is

Mor(CC(R,LM)) =
∐

Γ,Γ′∈Ob(CC(R,LM))

R(l(Γ′), l(Γ))

with the obvious domain and codomain maps.

The composition of morphisms in CC(R,LM) is defined by the formula

(Γ, (Γ′, f)) ◦ (Γ′, (Γ′′, g)) = (Γ, (Γ′′, g◦̂f))

and the identity morphisms by
IdΓ = (Γ, (Γ, ηl(Γ)))

The axioms of a category follow from Lemma 2.15(1,2).

Since we will have to deal with elements of the sets of functions R(stn(m))stn(n) and of similar sets
such as the sets Obn(CC(R,LM)) we need to choose some way to represent them. For the purpose
of the present paper we will write such elements as sequences, i.e., to denote the function, which
in the notation of λ-calculus is written as λ i : stn(n), fi we will write (f0, . . . , fn−1).

To simplify the notation we will sometimes use the mappings φR and ρ as, using the terminology
of the proof assistant Coq, coercions. That is, for f ∈ R(n,m) we may write f instead of ρ(f) and
similarly for f ∈ F (n,m) we may write f instead of φR(f). For example, for f ∈ F (n,m) and
E ∈ LM(n) we may write f(E) where the complete expression would be ρ(φR(f))(E). Similarly,
we will use as coercions the mappings ηn such that if we write i ∈ N where an element of R(stn(n))
is required it is assumed that i needs to be replaced by ηn(i) before the computation can occur.

Let
∂in : stn(n)→ stn(n+ 1)

for 0 ≤ i ≤ n be the increasing inclusion that does not take the value i and

σin : stn(n+ 2)→ stn(n+ 1)

for 0 ≤ i ≤ n be the increasing surjection that takes the value i twice. Taking into account that
stn(n) = [n− 1] in the notation of [5] these are the standard generators of the simplicial category
∆ together with ∂0

0 : stn(0)→ stn(1). In our sequence notation we have

∂in = (0, . . . , i− 1, i+ 1, . . . , n)

and
σin = (0, . . . , i− 1, i, i, i+ 1, . . . , n)

in particular
[2015.07.12.eq5]∂nn = (0, . . . , n− 1) (1)

Remark 3.2 [2015.08.18.rem1]If we think of E ∈ LM(stn(n)) as of an expression in variables
0, . . . , n− 1 then we have:

∂in(E) = E[0/0, . . . , i− 1/i− 1, i+ 1/i, . . . , n/n− 1]

12

in particular for E ∈ LM(stn(n)), ∂nn(E) is “the same” expression but considered as an expression
of n+ 1-variables.

Similarly, for E ∈ LM(stn(n+ 2)) one has

σin(E) = E[0/0, . . . , i/i, i/i+ 1, . . . , n/n+ 1]

For Γ ∈ Ob(CC(R,LM)) such that Γ = (n+1, (T0, . . . , Tn)) denote by ft(Γ) the object (n, (T0, . . . , Tn−1))
and by pΓ the morphism

(Γ, (ft(Γ), ∂nn)) : Γ→ ft(Γ)

where we have used our coercion convention to write ∂nn instead of φR(∂nn).

Lemma 3.3 [2015.07.24.l1] One has:

1. Let f = (Γ, (Γ′, ff)) where ff = (f0, . . . , fn) be a morphism. Then

f ◦ pΓ′ = (Γ, (ft(Γ′), (f0, . . . , fn−1)))

2. Let f = (ft(Γ), (Γ′, ff)) where ff = (f0, . . . , fn) be a morphism. Then

pΓ ◦ f = (∂mm(f0), . . . , ∂mm(fn))

where l(Γ) = m+ 1.

Remark 3.4 [2015.08.18.rem2] In the second assertion of the lemma we use our coercion con-
vention in the right hand side of the equality applied to R considered as a pre-algebra over itself.
The full form of the expressions ∂mm(fi) that we use there are bind(φR(∂mm))(fi).

Proof: For the first assertion we need to check that for i = 0, . . . , n− 1 one has:

(∂nn ◦̂ff)(i) = ff(i)

We have
(∂nn ◦̂ff)(i) = (φR(∂nn)◦̂ff)(i) = (∂nn ◦ ff)(i) = ff(∂nn(i)) = ff(i)

where the first equality is by our convention that we use φR as a coercion and the second equality
is by Lemma 2.15(3).

For the second assertion we need to check that for i = 0, . . . , n one has:

(ff ◦̂∂mm)(i) = bind(φR(∂mm))(ff(i))

We have

(ff ◦̂∂mm)(i) = (ff ◦̂(φR(∂mm)))(i) = (ff ◦ bind(φR(∂mm)))(i) = bind(φR(∂mm))(ff(i))

Problem 3.5 [2015.08.17.prob1] To construct the structure of a C0-system (cf. [26, Definition
2.1]) on the pre-category CC(R,LM).

13

Construction 3.6 [2015.08.17.constr1] The length function l and the function ft have already
been defined. The object pt is the only element of Ob(CC(R,LM)) of length 0. The canonical
projections have already been defined for elements of length > 0 and we define ppt as the identity
morphism.

Given two objects Γ′ = (T ′0, . . . , T
′
m−1) and ∆ = (T0, . . . , Tn) and a morphism

f = (Γ′, (ft(∆), (f0, . . . , fn1))) : Γ′ → ft(∆)

one defines an object f∗(∆) and a morphism q(f,∆) : f∗(∆)→ ∆ as follows:

f∗(∆) = (T ′0, . . . , T
′
m−1, ff(Tn))

where ff = (f0, . . . , fn−1) and

q(f,∆) = (f∗(∆), (∆, qq(f)))

where for f ∈ R(m,n),
qq(f) = (∂mm(f0), . . . , ∂mm(fn−1),m)

The first four conditions of [26, Definition 2.1] are obvious. The fifth condition asserts that for all
Γ′,∆ and f as above the square

f∗(∆)
q(f,∆)−−−−→ ∆

pf∗(∆)

y yp∆

Γ′
f−−−→ ft(∆)

commutes. This amounts to proving that for each i = 0, . . . , n− 1 one has

(∂nn ◦̂qq(f))(i) = (ff ◦̂∂mm)(i)

We have

(∂nn ◦̂qq(f))(i) = (φR(∂nn)◦̂qq(f))(i) = (∂nn ◦ qq(f))(i) = qq(f)(i) = ∂mm(ff(i))

where the last equality holds since i ≤ n− 1. On the other hand

(ff ◦̂∂mm)(i) = (ff ◦̂φR(∂mm))(i) = (ff ◦ bind(φR(∂mm)))(i) = bind(φR(∂mm))(ff(i)) = ∂mm(ff(i))

where the last equality is by our convention on notations.

Proposition 3.7 [2015.07.24.prop1] The data specified above defines a C0-system.

Proof: The first four conditions of [26, Definition 2.1] are obvious. The fifth condition states that
the “canonical squares”

f∗(∆)
q(f,∆)−−−−→ ∆ypf∗(∆)

yp∆

Γ′
f−−−→ Γ

14

commute. Let Γ = (T1, . . . , Tn) and Γ′ = (T ′1, . . . , T
′
m). We have:

q(f,∆) ◦ p∆ = (f1, . . . , fn)

by (??) and Lemma 3.3(1) and

pf∗(∆) ◦ f = pf∗(∆) ◦ (f1, . . . , fn) = (f1, . . . , fn)

by Lemma ??(2).

The sixth condition asserts that Id∗(∆) = ∆ and q(Id,∆) = Id. This follows immediately from
our definition of f∗ and q(f,∆) since for Γ such that l(Γ) = n we have IdΓ = (1, . . . , n).

The seventh and last condition asserts that for Γ′′ = (T ′′1 , . . . , T
′′
k), Γ′ = (T ′1, . . . , T

′
m), ∆ =

(T1, . . . , Tn+1), g = (g1, . . . , gm) : Γ′′ → Γ′ and f = (f1, . . . , fn) : Γ′ → Γ one has

g∗(f∗(∆)) = (g ◦ f)∗(∆)

and
q(g ◦ f,∆) = q(g, f∗(∆)) ◦ q(f,∆)

For the first equality we have:

g∗(f∗(∆)) = g∗(T ′1, . . . , T
′
m, Tn+1(f1/1, . . . , fn/n)) = (T ′′1 , . . . , T

′′
k , Tn+1(f1/1, . . . , fn/n)(g1/1, . . . , gm/m))

and
(g ◦ f)∗(∆) = (T ′′1 , . . . , T

′′
k , Tn+1((g ◦ f)1/1, . . . , (g ◦ f)n/n))

The canonical pull-back square defined by an object (T1, . . . , Tn+1) and a morphism

(f1, . . . , fn) : (R1, . . . , Rm)→ (T1, . . . , Tn)

is of the form:

(R1, . . . , Rm, Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,m+1)−−−−−−−−−→ (T1, . . . , Tn+1)

(1,...,m)

y y(1,...,n)

(R1, . . . , Rm)
(f1,...,fn)−−−−−−→ (T1, . . . , Tn)

(2)

Proposition 3.8 [2009.10.01.prop2] With the structure defined above CC(R,LM) is a C-system.

Proof: Straightforward.

Remark 3.9 [2014.09.28.rm1] One can easily construct on the function (R,LM) 7→ CC(R,LM)
the structure of a functor from the “large module category” of [8] to the category of C-systems and
their homomorphisms.

15

Remark 3.10 There is another construction of a pre-category from (R,LM) which takes as an
additional parameter a set V ar which is called the set of variables. Let Fn(V ar) be the set of se-
quences of length n of pair-wise distinct elements of V ar. Define the pre-category CC(R,LM, V ar)
as follows. The set of objects of CC(R,LM, V ar) is

Ob(CC(R,LM, V ar)) = qn≥0 q(x1,...,xn)∈Fn(V ar) LM(stn(0))× . . .× LM({x1, . . . , xn−1})

For compatibility with the traditional type theory we will write the elements of Ob(CC(R,LM, X))
as sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(R,LM,V ar)((x1 : E1, . . . , xm : Em), (y1 : T1, . . . , yn : Tn)) = R({x1, . . . , xm})n

The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7→ (E1, E2(1/x1), . . . , En(1/x1, . . . , n− 1/xn−1))

is a functor from CC(R,LM, V ar) to CC(R,LM).

This functor is clearly an equivalence of categories but not an isomorphism of pre-categories.

There are an obvious final object and the map ft on CC(R,LM, V ar).

There is however a real problem in making it into a C-system which is due to the following. Consider
an object (y1 : T1, . . . , yn+1 : Tn+1) and a morphism (f1, . . . , fn) : (x1 : R1, . . . , xm : Rm) → (y1 :
T1, . . . , yn : Tn). In order for the functor to CC(R,LM) to be a C-system morphism the canonical
square build on this pair should have the form

(x1 : R1, . . . , xm : Rm, xm+1 : Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,xn+1)−−−−−−−−−→ (y1 : T1, . . . , yn+1 : Tn+1)y y

(x1 : R1, . . . , xm : Rm)
(f1,...,fn)−−−−−−→ (y1 : T1, . . . , yn : Tn)

where xm+1 is an element of V ar which is distinct from each of the elements x1, . . . , xm. Moreover,
we should choose xm+1 in such a way the the resulting construction satisfies the C-system axioms
for (f1, . . . , fn) = Id and for the compositions (g1, . . . , gm) ◦ (f1, . . . , fn). One can easily see that
no such choice is possible for a finite set V ar. At the moment it is not clear to me whether or not
it is possible for an infinite V ar.

Recall from [26] that for a C-system CC one defines Õb(CC) as the subset of Mor(CC) which
consists of morphisms s of the form ft(X)→ X such that l(X) > 0 and s ◦ pX = Idft(X).

Lemma 3.11 [2014.06.30.l2] One has:

Õb(CC(R,LM)) ∼=
∐
n≥0

LM(stn(0))× . . .× LM(stn(n))×R(stn(n))

Proof: An element of Õb(CC(R,LM)) is a section s of the canonical morphism pΓ : Γ → ft(Γ).
It follows immediately from the definition of CC(R,LM) that for Γ = (E1, . . . , En+1), a morphism
(f1, . . . , fn+1) ∈ R(stn(n))n+1 from ft(Γ) to Γ is a section of pΓ if an only if fi = i for i =

16

1, . . . , n. Therefore, any such section is determined by its last component fn+1 and mapping
((E1, . . . , En), (E1, . . . , En+1), (f1, . . . , fn+1)) to (E1, . . . , En, En+1, fn+1) we get a bijection

[2009.10.15.eq2]Õb(CC(R,LM)) ∼=
∐
n≥0

LM(stn(0))× . . .× LM(stn(n))×R(stn(n)) (3)

Using the notations of type theory we can write elements of Ob(CC(R,LM)) as

Γ = (T1, . . . , TnB)

where Ti ∈ LM(î− 1) and the elements of Õb(CC(R,LM)) as

J = (T1, . . . , Tn ` t : T)

where Ti ∈ LM(î− 1), T ∈ LM(stn(n)) and t ∈ R(stn(n)).

In this notation the operations T, T̃ , S, S̃ and δ which were introduced in [26] take the form:

1. T ((Γ, Tn+1B), (Γ,∆B)) = (Γ, Tn+1, tn+1(∆)B) when l(Γ) = n,

2. T̃ ((Γ, Tn+1B), (Γ,∆ ` r : R)) = (Γ, Tn+1, tn+1(∆) ` tn+1(r : R)) when l(Γ) = n,

3. S((Γ ` s : S), (Γ, S,∆B)) = (Γ, sn+1(∆[s/n+ 1])B) when l(Γ) = n,

4. S̃((Γ ` s : S), (Γ, S,∆ ` r : R)) = (Γ, sn+1(∆[s/n+1]) ` sn+1((r : R)[s/n+1]) when l(Γ) = n,

5. δ(Γ, TB) = (Γ, T ` (n+ 1) : T) when l(Γ) = n.

4 C-subsystems of CC(R,LM).

Let CC be a C-subsystem of CC(R,LM). By [26] CC is determined by the subsets C = Ob(CC)

and C̃ = Õb(CC) in Ob(CC(R,LM)) and Õb(CC(R,LM)).

For Γ = (E1, . . . , En) we write (ΓBC) if (E1, . . . , En) is in C and (Γ `
C̃
t : T) if (E1, . . . , En, T, t)

is in C̃.

The following result is an immediate corollary of [26, Proposition 4.3] together with the description
of the operations T, T̃ , S, S̃ and δ for CC(R,LM) which is given above.

Proposition 4.1 [2009.10.16.prop3] Let (R,LM) be a monad on Sets and a left module over
it with values in Sets. A pair of subsets

C ⊂
∐
n≥0

n−1∏
i=0

LM(stn(i))

C̃ ⊂
∐
n≥0

(
n∏
i=0

LM(stn(i)))×R(stn(n))

corresponds to a C-subsystem CC of CC(R,LM) if and only if the following conditions hold:

17

1. (BC)

2. (Γ, TBC)⇒ (ΓBC)

3. (Γ `
C̃
r : R)⇒ (Γ, RBC)

4. (Γ, TBC) ∧ (Γ,∆,`
C̃
r : R)⇒ (Γ, T, tn+1(∆) `

C̃
tn+1(r : R)) where n = l(Γ1)

5. (Γ `
C̃
s : S) ∧ (Γ, S,∆ `

C̃
r : R) ⇒ (Γ, sn+1(∆[s/n + 1]) `

C̃
sn+1((r : R)[s/n + 1])) where

n = l(Γ1),

6. (Γ, TBC)⇒ (Γ, T `
C̃
n+ 1 : T) where n = l(Γ).

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (Γ, TBC) ∧ (Γ,∆BC)⇒ (Γ, T, tn+1(∆)BC) where n = l(Γ1),

5a (Γ `
C̃
s : S) ∧ (Γ, S,∆BC)⇒ (Γ, sn+1(∆[s/n+ 1])BC) where n = l(Γ1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that C 6= ∅.

Remark 4.2 [2010.08.07.rem1] If one re-writes the conditions of Proposition 4.1 in the more
familiar in type theory form where the variables introduced in the context are named rather than
directly numbered one arrives at the following rules:

BC

x1 : T1, . . . , xn : TnBC

x1 : T1, . . . , xn−1 : Tn−1BC

x1 : T1, . . . , xn : Tn `C̃ t : T

x1 : T1, . . . , xn : Tn, y : TBC

x1 : T1, . . . , xn : Tn, y : T BC x1 : T1, . . . , xn : Tn, . . . , xm : Tm `C̃ r : R

x1 : T1, . . . , xn : Tn, y : T, xn+1 : Tn+1, . . . , xm : Tm `C̃ r : R

x1 : T1, . . . , xn : Tn `C̃ s : S x1 : T1, . . . , xn : Tn, y : S, xn+1 : Tn+1, . . . , xm : Tm `C̃ r : R

x1 : T1, . . . , xn : Tn, xn+1 : Tn+1[s/y], . . . , xm : Tm[s/y] `
C̃

(r : R)[s/y]

x1 : E1, . . . , xn : EnBC

x1 : E1, . . . , xn : En `C̃ xn : En

which are similar (and probably equivalent) to the “basic rules of DTT” given in [10, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
sufficient for a given collection of contexts and judgements to define a C-system.

Lemma 4.3 [2009.11.05.l1] Let CC be as above and let (E1, . . . , Em), (T1, . . . , Tn) ∈ Ob(CC)
and (f1, . . . , fn) ∈ R(m̂)n. Then

(f1, . . . , fn) ∈ HomCC((E1, . . . , Em), (T1, . . . , Tn))

if and only if (f1, . . . , fn−1) ∈ HomCC((E1, . . . , Em), (T1, . . . , Tn−1)) and

E1, . . . , Em `C̃ fn : Tn(f1/1, . . . , fn−1/n− 1)

18

Proof: Straightforward using the fact that the canonical pull-back squares in CC(R,LM) are
given by (2).

Example 4.4 The category CC(R,R) for the identity monad is empty. For the monad of the form
R(X) = pt the C-system CC(R,R) has only two subsystems - itself and the trivial one for which
C = pt.

The first non-trivial example is the monad R(X) = X q {∗}. We conjecture that in this case the
set of all C-subsystems of CC(R,R) is uncountable.

One can probably show this as follows. Let ε : N → {0, 1}, be a sequence of 0’s and 1’s. Con-
sider the C-subsystem of CCε of CC(R,R) which is generated by the set of elements of the form
(∗, 1, 2, . . . , nB) ∈ Ob(CC(R,R)) for all n ≥ 0 and elements (∗, 1, . . . , n + 1 ` n + 2 : ∗) ∈
Õb(CC(R,R)) for n such that ε(n) = 1.

It should be possible to show that CCε 6= CCε′ for ε 6= ε′ which would imply the conjecture.

5 Operations σ and σ̃ on CC(R,LM).

C-systems of the form CC(R,LM) have an important additional structure which will play a role
in the next section. This structure is given by two operations:

1. for Γ = (T1, . . . , Tn, . . . , Tn+i) and Γ′ = (T ′1, . . . , T
′
n) we set

σ(Γ,Γ′) = (T ′1, . . . , T
′
n, Tn+1, . . . , Tn+i)

This gives us an operation with values in Ob defined on the subset of Ob×Ob which consists
of pairs (Γ,Γ′) such that l(Γ) > l(Γ′),

2. for J = (T1, . . . , Tn−1, . . . , Tn−1+i ` t : Tn+i), Γ′ = (T ′1, . . . , T
′
n) we set

σ̃(J ,Γ′) =

{
(T ′1, . . . , T

′
n, Tn+1, . . . , Tn+i−1 ` t : Tn+i) for i > 0

(T ′1, . . . , T
′
n−1 ` t : T ′n) for i = 0

This gives us an operation with values in Õb defined on the subset of Õb×Ob which consists
of pairs (J ,Γ′) such that l(∂(J)) ≤ l(Γ′).

6 Regular sub-quotients of CC(R,LM).

Let (R,LM) be as above and

Ceq ⊂
∐
n≥0

(

n−1∏
i=0

LM(stn(i)))× LM(stn(n))2

C̃eq ⊂
∐
n≥0

(

n∏
i=0

LM(stn(i)))×R(stn(n))2

be two subsets.

19

For Γ = (T1, . . . , Tn) ∈ ob(CC(R,LM)) and S1, S2 ∈ LM(stn(n)) we write (Γ `Ceq S1 = S2) to
signify that (T1, . . . , Tn, S1, S2) ∈ Ceq. Similarly for T ∈ LM(stn(n)) and o, o′ ∈ R(stn(n)) we

write (Γ `
C̃eq

o = o′ : S) to signify that (T1, . . . , Tn, S, o, o
′) ∈ C̃eq. When no confusion is possible

we will omit the subscripts Ceq and C̃eq at `.

Similarly we will write B instead of BC and ` instead of `
C̃

if the subsets C and C̃ are unambigu-
ously determined by the context.

Definition 6.1 [simandsimeq] Given subsets C, C̃, Ceq, C̃eq as above define relations ∼ on C
and ' on C̃ as follows:

1. for Γ = (T1, . . . , Tn), Γ′ = (T ′1, . . . , T
′
n) in C we set Γ ∼ Γ′ iff ft(Γ) ∼ ft(Γ′) and

T1, . . . , Tn−1 ` Tn = T ′n,

2. for (Γ ` o : S), (Γ′ ` o′ : S′) in C̃ we set (Γ ` o : S) ' (Γ′ ` o′ : S′) iff (Γ, S) ∼ (Γ′, S′) and

(Γ ` o = o′ : S).

Proposition 6.2 [2014.07.10.prop1] Let C, C̃, Ceq, C̃eq be as above and suppose in addition
that one has:

1. C and C̃ satisfy conditions (1)-(6) of Proposition 4.1 which are referred to below as conditions
(1.1)-(1.6) of the present proposition,

2.
(a) (Γ ` T = T ′)⇒(Γ, TB)
(b) (Γ, TB)⇒(Γ ` T = T)
(c) (Γ ` T = T ′)⇒(Γ ` T ′ = T)
(d) (Γ ` T = T ′) ∧ (Γ ` T ′ = T ′′)⇒(Γ ` T = T ′′)

3.
(a) (Γ ` o = o′ : T)⇒(Γ ` o : T)
(b) (Γ ` o : T)⇒(Γ ` o = o : T)
(c) (Γ ` o = o′ : T)⇒(Γ ` o′ = o : T)
(d) (Γ ` o = o′ : T) ∧ (Γ ` o′ = o′′ : T)⇒(Γ ` o = o′′ : T)

4.
(a) (Γ1 ` T = T ′) ∧ (Γ1, T,Γ2 ` S = S′)⇒(Γ1, T

′,Γ2 ` S = S′)
(b) (Γ1 ` T = T ′) ∧ (Γ1, T,Γ2 ` o = o′ : S)⇒(Γ1, T

′,Γ′2 ` o = o′ : S)
(c) (Γ ` S = S′) ∧ (Γ ` o = o′ : S)⇒(Γ ` o = o′ : S′)

5.

(a) (Γ1, TB) ∧ (Γ1,Γ2 ` S = S′)⇒(Γ1, T, ti+1Γ2 ` ti+1S = ti+1S
′) i = l(Γ)

(b) (Γ1, TB) ∧ (Γ1,Γ2 ` o = o′ : S)⇒(Γ1, T, ti+1Γ2 ` ti+1o = ti+1o
′ : ti+1S) i = l(Γ)

6.

(a) (Γ1, T,Γ2 ` S = S′) ∧ (Γ1 ` r : T)⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S′[r/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ` o = o′ : S) ∧ (Γ1 ` r : T)⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o′[r/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

20

7.

(a) (Γ1, T,Γ2, SB) ∧ (Γ1 ` r = r′ : T)⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S[r′/i+ 1])) i = l(Γ1)
(b) (Γ1, T,Γ2 ` o : S) ∧ (Γ1 ` r = r′ : T)⇒
(Γ1, si+1(Γ2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o[r′/i+ 1]) : si+1(S[r/i+ 1])) i = l(Γ1)

Then the relations ∼ and ' are equivalence relations on C and C̃ which satisfy the conditions of
[26, Proposition 5.4] and therefore they correspond to a regular congruence relation on the C-system
defined by (C, C̃).

Lemma 6.3 [iseqrelsiml1] One has:

1. If conditions (1.2), (4a) of the proposition hold then (Γ ` S = S′) ∧ (Γ ∼ Γ′)⇒(Γ′ ` S = S′).

2. If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (Γ ` o = o′ : S)∧((Γ, S) ∼ (Γ′, S′))⇒(Γ′ `
o = o′ : S′).

Proof: By induction on n = l(Γ) = l(Γ′).

(1) For n = 0 the assertion is obvious. Therefore by induction we may assume that (Γ ` S =
S′)∧ (Γ ∼ Γ′)⇒(Γ′ ` S = S′) for all i < n and all appropriate Γ,Γ′, S and S′ and that (T1, . . . , Tn `
S = S′)∧(T1, . . . , Tn ∼ T ′1, . . . , T ′n) holds and we need to show that (T ′1, . . . , T

′
n ` S = S′) holds. Let

us show by induction on j that (T ′1, . . . , T
′
j , Tj+1, . . . , Tn ` S = S′) for all j = 0, . . . , n. For j = 0 it

is a part of our assumptions. By induction we may assume that (T ′1, . . . , T
′
j , Tj+1, . . . , Tn ` S = S′).

By definition of ∼ we have (T1, . . . , Tj ` Tj+1 = T ′j+1). By the inductive assumption we have
(T ′1, . . . , T

′
j ` Tj+1 = T ′j+1). Applying (4a) with Γ1 = (T ′1, . . . T

′
j), T = Tj+1, T ′ = T ′j+1 and

Γ2 = (Tj+2, . . . , Tn) we conclude that (T ′1, . . . , T
′
j+1, Tj+2, . . . , Tn ` S = S′).

(2) By the first part of the lemma we have Γ′ ` S = S′. Therefore by (4c) it is sufficient to show
that (Γ ` o = o′ : S) ∧ (Γ ∼ Γ′)⇒(Γ′ ` o = o′ : S). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).

Lemma 6.4 [iseqrelsim] One has:

1. Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then ∼ is an equivalence
relation.

2. Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b),
(3c), (3d), (4b) and (4c) hold. Then ' is an equivalence relation.

Proof: By induction on n = l(Γ) = l(Γ′).

(1) Reflexivity follows directly from (1.2) and (2b). For n = 0 the symmetry is obvious. Let
(Γ, T) ∼ (Γ′, T ′). By induction we may assume that Γ′ ∼ Γ. By Lemma 6.3(a) we have (Γ′ `
T = T ′) and by (2c) we have (Γ′ ` T ′ = T). We conclude that (Γ′, T ′) ∼ (Γ, T). The proof of
transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ∼, (1.3) and (3b). Symmetry and transitivity are
also easy using Lemma 6.3.

21

From this point on we assume that all conditions of Proposition 6.2 hold. Let C ′ = C/ ∼ and
C̃ ′ = C̃/ '. It follows immediately from our definitions that the functions ft : C → C and
∂ : C̃ → C define functions ft′ : C ′ → C ′ and ∂′ : C̃ ′ → C ′.

Lemma 6.5 [surjl1] The conditions (3) and (4) of [26, Proposition 5.4] hold for ∼ and '.

Proof: 1. We need to show that for (Γ, TB), and Γ ∼ Γ′ there exists (Γ′, T ′B) such that (Γ, T) ∼
(Γ′, T ′). It is sufficient to take T = T ′. Indeed by (2b) we have Γ ` T = T , by Lemma 6.3(1) we
conclude that Γ′ ` T = T and by (1a) that Γ′, TB.

2. We need to show that for (Γ ` o : S) and (Γ, S) ∼ (Γ′, S′) there exists (Γ′ ` o′ : S′) such that
(Γ′ ` o′ : S′) ' (Γ ` o : S). It is sufficient to take o′ = o. Indeed, by (3b) we have (Γ ` o = o : S),
by Lemma 6.3(2) we conclude that (Γ′ ` o = o : S′) and by (2a) that (Γ′ ` o : S′).

Lemma 6.6 [TSetc] The equivalence relations ∼ and ' are compatible with the operations T, T̃ , S, S̃
and δ.

Proof: (1) Given (Γ1, TB) ∼ (Γ′1, T
′B) and (Γ1,Γ2B) ∼ (Γ′1,Γ

′
2B) we have to show that

(Γ1, T, tn+1Γ2) ∼ (Γ′1, T
′, tn+1Γ′2).

where n = l(Γ1) = l(Γ′1).

Proceed by induction on l(Γ2). For l(Γ2) = 0 the assertion is obvious. Let (Γ1, TB) ∼ (Γ′1, T
′B)

and (Γ1,Γ2, SB) ∼ (Γ′1,Γ
′
2, S
′B). The later condition is equivalent to (Γ1,Γ2B) ∼ (Γ′1,Γ

′
2B) and

(Γ1,Γ2 ` S = S′). By the inductive assumption we have (Γ1, T, tn+1Γ2) ∼ (Γ′1, T
′, tn+1Γ′2). By

(5a) we conclude that (Γ1, T, tn+1Γ2 ` tn+1S = tn+1S
′). Therefore by definition of ∼ we have

(Γ1, T, tn+1Γ2, tn+1S) ∼ (Γ′1, T
′, tn+1Γ′2, tn+1S

′).

(2) Given (Γ1, TB) ∼ (Γ′1, T
′B) and (Γ1,Γ2 ` o : S) ' (Γ′1,Γ

′
2 ` o′ : S′) we have to show that

(Γ1, T, tn+1Γ2 ` tn+1o : tn+1S) ' (Γ′1, T
′, tn+1Γ′2 ` tn+1o

′ : tn+1S
′) where n = l(Γ1) = l(Γ′1). We

have (Γ1,Γ2, S) ∼ (Γ′1,Γ
′
2, S
′) and (Γ1,Γ2 ` o = o′ : S). By (5b) we get (Γ1, T, tn+1Γ2 ` tn+1o =

tn+1o
′ : tn+1S). By (1) of this lemma we get (Γ1, T, tn+1Γ2, tn+1S) ∼ (Γ′1, T

′, tn+1Γ′2, tn+1S
′) and

therefore by definition of ' we get (Γ1, T, tn+1Γ2 ` tn+1o : tn+1S) ' (Γ′1, T
′, tn+1Γ′2 ` tn+1o

′ :
tn+1S

′).

(3) Given (Γ1 ` r : T) ' (Γ′1 ` r′ : T ′) and (Γ1, T,Γ2B) ∼ (Γ′1, T
′,Γ′2B) we have to show that

(Γ1, sn+1(Γ2[r/n+ 1])) ∼ (Γ′1, sn+1(Γ′2[r′/n+ 1])).

where n = l(Γ1) = l(Γ′1). Proceed by induction on l(Γ2). For l(Γ2) = 0 the assertion follows directly
from the definitions. Let (Γ1 ` r : T) ' (Γ′1 ` r′ : T ′) and (Γ1, T,Γ2, SB) ∼ (Γ′1, T

′,Γ′2, S
′B). The

later condition is equivalent to (Γ1, T,Γ2B) ∼ (Γ′1, T
′,Γ′2B) and (Γ1, T,Γ2 ` S = S′). By the

inductive assumption we have (Γ1, sn+1(Γ2[r/n + 1])) ∼ (Γ′1, sn+1(Γ′2[r′/n + 1])). It remains to
show that (Γ1, sn+1(Γ2[r/n+1]) ` sn+1(S[r/n+1]) = sn+1(S′[r′/n+1])). By (2d) it is sufficient to
show that (Γ1, sn+1(Γ2[r/n+1]) ` sn+1(S[r/n+1]) = sn+1(S′[r/n+1])) and (Γ1, sn+1(Γ2[r/n+1]) `
sn+1(S′[r/n+ 1]) = sn+1(S′[r′/n+ 1])). The first relation follows directly from (6a). To prove the
second one it is sufficient by (7a) to show that (Γ1, T,Γ2, S

′B) which follows from our assumption
through (2c) and (2a).

(4) Given (Γ1 ` r : T) ' (Γ′1 ` r′ : T ′) and (Γ1, T,Γ2 ` o : S) ' (Γ′1, T
′,Γ′2 ` o′ : S′) we have to

show that
(Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(o[r/n+ 1]) : sn+1(S[r/n+ 1])) '

22

(Γ′1, sn+1(Γ′2[r′/n+ 1]) ` sn+1(o′[r′/n+ 1]) : sn+1(S′[r′/n+ 1])).

where n = l(Γ1) = l(Γ′1) or equivalently that

(Γ1, sn+1(Γ2[r/n+ 1]), sn+1(S[r/n+ 1])) ∼ (Γ′1, sn+1(Γ′2[r′/n+ 1]), sn+1(S′[r′/n+ 1]))

and (Γ1, sn+1(Γ2[r/n + 1]) ` sn+1(o[r/n + 1]) = sn+1(o′[r′/n + 1]) : sn+1(S[r/n + 1])). The first
statement follows from part (3) of the lemma. To prove the second statement it is sufficient by
(3d) to show that (Γ1, sn+1(Γ2[r/n+ 1]) ` sn+1(o[r/n+ 1]) = sn+1(o′[r/n+ 1]) : sn+1(S[r/n+ 1]))
and (Γ1, sn+1(Γ2[r/n + 1]) ` sn+1(o′[r/n + 1]) = sn+1(o′[r′/n + 1]) : sn+1(S[r/n + 1])). The first
assertion follows directly from (6b). To prove the second one it is sufficient in view of (7b) to show
that (Γ1, T,Γ2 ` o′ : S) which follows conditions (3c) and (3a).

(5) Given (Γ, T) ∼ (Γ′, T ′) we need to show that (Γ, T ` (n + 1) : T) ' (Γ′, T ′ ` (n + 1) : T ′) or
equivalently that (Γ, T, T) ∼ (Γ, T ′, T ′) and (Γ, T ` (n+ 1) = (n+ 1) : T). The second part follows
from (3b). To prove the first part we need to show that (Γ, T ` T = T ′). This follows from our
assumption by (5a).

Lemma 6.7 [2014.07.12.l1] Let C be a subset of Ob(CC(R,LM)) which is closed under ft. Let
≤ be a transitive relation on C such that:

1. Γ ≤ Γ′ implies l(Γ) = l(Γ′),

2. Γ ∈ C and ft(Γ) ≤ F implies σ(Γ, F) ∈ C and Γ ≤ σ(Γ, F).

Then Γ ∈ C and fti(Γ) ≤ F for some i ≥ 1, implies that Γ ≤ σ(Γ, F).

Proof: Simple induction on i.

Lemma 6.8 [2014.07.12.l2] Let C and ≤ be as in Lemma 6.7. Then one has:

1. (Γ, T) ≤ (Γ, T ′) and Γ ≤ Γ′ implies that (Γ, T) ≤ (Γ′, T ′),

2. if ≤ is ft-monotone (i.e. Γ ≤ Γ′ implies ft(Γ) ≤ ft(Γ′)) and symmetric then (Γ, T) ≤ (Γ′, T ′)
implies that (Γ, T) ≤ (Γ, T ′).

Proof: The first assertion follows from

(Γ, T) ≤ (Γ, T ′) ≤ σ((Γ, T ′),Γ′) = (Γ′, T ′)

The second assertion follows from

(Γ, T) ≤ (Γ′, T ′) ≤ σ((Γ′, T ′),Γ) = (Γ, T ′)

where the second ≤ requires Γ′ ≤ Γ which follows from ft-monotonicity and symmetry.

Lemma 6.9 [2014.07.12.l3] Let C,≤ be as in Lemma 6.7, let C̃ be a subset of Õb(CC(R,LM))
and ≤′ a transitive relation on C̃ such that:

1. J ≤′ J ′ implies ∂(J) ≤ ∂(J ′),

23

2. J ∈ C̃ and ∂(J) ≤ F implies σ̃(J , F) ∈ C̃ and J ≤′ σ̃(J , F).

Then J ∈ C̃ and fti(∂(J)) ≤ F for some i ≥ 0 implies J ≤ σ̃(J , F).

Proof: Simple induction on i.

Lemma 6.10 [2014.07.12.l4] Let C,≤ and C̃,≤′ be as in Lemma 6.9. Then one has:

1. (Γ ` o : T) ≤′ (Γ ` o′ : T) and (Γ, T) ≤ (Γ′, T ′) implies that (Γ ` o : T) ≤′ (Γ′ ` o′ : T ′),

2. if (≤,≤′) is ∂-monotone (i.e. J ≤′ J ′ implies ∂(J) ≤ ∂(J ′)) and ≤ is symmetric then
(Γ ` o : T) ≤′ (Γ′ ` o′ : T ′) implies that (Γ ` o : T) ≤′ (Γ ` o′ : T).

Proof: The first assertion follows from

(Γ ` o : T) ≤′ (Γ ` o′ : T) ≤′ σ̃((Γ ` o′ : T), (Γ′, T ′)) = (Γ′ ` o′ : T ′)

The second assertion follows from

Γ ` o : T) ≤′ (Γ′ ` o′ : T ′) ≤′ σ((Γ′ ` o′ : T ′), (Γ, T)) = (Γ ` o′ : T)

where the second ≤ requires Γ′ ≤ Γ which follows from ∂-monotonicity of ≤′ and symmetry of ≤.

Proposition 6.11 [2014.07.10.prop2] Let (C, C̃) be subsets in Ob(CC(R,LM)) and Õb(CC(R,LM))
respectively which correspond to a C-subsystem CC of CC(R,LM). Then the constructions pre-

sented above establish a bijection between pairs of subsets (Ceq, C̃eq) which together with (C, C̃)
satisfy the conditions of Proposition 6.2 and pairs of equivalence relations (∼,') on (C, C̃) such
that:

1. (∼,') corresponds to a regular congruence relation on CC (i.e., satisfies the conditions of
[26, Proposition 5.4]),

2. Γ ∈ C and ft(Γ) ∼ F implies Γ ∼ σ(Γ, F),

3. J ∈ C̃ and ∂(J) ∼ F implies J ' σ̃(J , F).

Proof: One constructs a pair (∼,') from (Ceq, C̃eq) as in Definition 6.1. This pair corresponds
to a regular congruence relation by Proposition 6.2. Conditions (2),(3) follow from Lemma 6.3.

Let (∼,') be equivalence relations satisfying the conditions of the proposition. Define Ceq as the

set of sequences (Γ, T, T ′) such that (Γ, T), (Γ, T ′) ∈ C and (Γ, T) ∼ (Γ, T ′). Define C̃eq as the set
of sequences (Γ, T, o, o′) such that (Γ, T, o), (Γ, T, o′) ∈ C̃ and (Γ, T, o) ' (Γ, T, o′).

Let us show that these subsets satisfy the conditions of Proposition 6.2. Conditions (2.a-2.d) and
(3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 6.7. Conditions (4b) and (4c) follow from (3) by Lemma
6.9.

Conditions (5a) and (5b) follow from the compatibility of (∼,') with T and T̃ .

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (∼,') with S and S̃.

24

References

[1] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the
Rezk completion. Math. Structures Comput. Sci., 25(5):1010–1039, 2015.

[2] John Cartmell. Generalised algebraic theories and contextual categories. Ph.D. Thesis, Oxford
University, 1978. https://uf-ias-2012.wikispaces.com/Semantics+of+type+theory.

[3] John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.
Logic, 32(3):209–243, 1986.

[4] Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding (ex-
tended abstract). In 14th Symposium on Logic in Computer Science (Trento, 1999), pages
193–202. IEEE Computer Soc., Los Alamitos, CA, 1999.

[5] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.

[6] Roger Godement. Topologie algébrique et théorie des faisceaux. Actualit’es Sci. Ind. No. 1252.
Publ. Math. Univ. Strasbourg. No. 13. Hermann, Paris, 1958.

[7] André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In Logic, language,
information and computation, volume 4576 of Lecture Notes in Comput. Sci., pages 218–237.
Springer, Berlin, 2007.

[8] André Hirschowitz and Marco Maggesi. Higher order theories. http: // arxiv. org/ abs/

0704. 2900 , 2010.

[9] André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. Inform.
and Comput., 208(5):545–564, 2010.

[10] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and the Foun-
dations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.

[11] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model of
univalent foundations. Available at http: // arxiv. org/ abs/ 1211. 2851 , 2012, 2014.

[12] H. Kleisli. Every standard construction is induced by a pair of adjoint functors. Proc. Amer.
Math. Soc., 16:544–546, 1965.

[13] F. William Lawvere. Functorial semantics of algebraic theories and some algebraic problems in
the context of functorial semantics of algebraic theories. Repr. Theory Appl. Categ., (5):1–121,
2004. Reprinted from Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869–872 [MR0158921] and ıt
Reports of the Midwest Category Seminar. II, 41–61, Springer, Berlin, 1968 [MR0231882].

[14] S. MacLane. Categories for the working mathematician, volume 5 of Graduate texts in Math-
ematics. Springer-Verlag, 1971.

[15] Ernest G. Manes. Algebraic theories. Springer-Verlag, New York-Heidelberg, 1976. Graduate
Texts in Mathematics, No. 26.

[16] Per Martin-Löf. Constructive mathematics and computer programming. In Logic, methodology
and philosophy of science, VI (Hannover, 1979), volume 104 of Stud. Logic Found. Math., pages
153–175. North-Holland, Amsterdam, 1982.

25

https://uf-ias-2012.wikispaces.com/Semantics+of+type+theory
http://arxiv.org/abs/0704.2900
http://arxiv.org/abs/0704.2900
http://arxiv.org/abs/1211.2851

[17] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Lecture Notes.
Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

[18] Eugenio Moggi. Notions of computation and monads. Inform. and Comput., 93(1):55–92,
1991. Selections from the 1989 IEEE Symposium on Logic in Computer Science.

[19] Thomas Streicher. Semantics of type theory. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1991. Correctness, completeness and independence re-
sults, With a foreword by Martin Wirsing.

[20] Vladimir Voevodsky. Notes on type systems. https: // github. com/ vladimirias/ old_

notes_ on_ type_ systems , 2009–2012.

[21] Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. arXiv
1402.5556, pages 1–11, 2010.

[22] Vladimir Voevodsky. A C-system defined by a universe category. arXiv 1409.7925, submitted,
pages 1–33, 2015.

[23] Vladimir Voevodsky. An experimental library of formalized mathematics based on the univa-
lent foundations. Math. Structures Comput. Sci., 25(5):1278–1294, 2015.

[24] Vladimir Voevodsky. Martin-lof identity types in the c-systems defined by a universe category.
arXiv 1505.06446, submitted, pages 1–51, 2015.

[25] Vladimir Voevodsky. Products of families of types in the C-systems defined by a universe
category. arXiv 1503.07072, submitted, pages 1–30, 2015.

[26] Vladimir Voevodsky. Subsystems and regular quotients of C-systems. In Conference on Math-
ematics and its Applications, (Kuwait City, 2014), number to appear, pages 1–11, 2015.

[27] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath: Univalent Mathemat-
ics. Available at https://github.com/UniMath.

26

https://github.com/vladimirias/old_notes_on_type_systems
https://github.com/vladimirias/old_notes_on_type_systems
https://github.com/UniMath

	Introduction
	Left modules over monads
	The C-system CC(R,LM).
	C-subsystems of CC(R,LM).
	Operations and "0365 on CC(R,LM).
	Regular sub-quotients of CC(R,LM).

